Fast computing of the positive polarity Reed-Muller transform over GF(2) and GF(3)


Бакоев, Валентин (2008) Fast computing of the positive polarity Reed-Muller transform over GF(2) and GF(3) Proc. of the XI Intern. Workshop on Algebraic and Combinatorial Coding Theory (ACCT), 16-22 June, 2008, Pamporovo, Bulgaria, pp.13-21. ISSN: 1313-423X; http://www.moi.math.bas.bg/acct2008/b2.pdf


 The problem of efficient computing of binary and ternary positive (or zero) polarity Reed-Muller (PPRM) transform is important for many areas. The matrices, determining these transforms, are defined recursively or by Kronecker product. Using this fact, we apply the dynamic-programming strategy to develop three algorithms. The first of them is a new version of a previous our algorithm for performing the binary PPRM transform. The second one is a bit-wise implementation of the first algorithm....
  Доклад
 Binary and Ternary Positive Polarity Reed-Muller Transform, Algorithms for computing.


Природни науки, математика и информатика
Природни науки, математика и информатика Информатика и компютърни науки

Natural sciences, mathematics and informatics
Natural sciences, mathematics and informatics Informatics and Computer Science

 Издадено
  4022
 Валентин Бакоев

2. Bikov D., I. Bouyukliev (2017). Parallel Fast Möbius (Reed-Muller) Transform and its Implementation with CUDA on GPUs. In: PASCO 2017, Proc. of the Intern. Workshop on Parallel Symbolic Computation, July 23-24, 2017, Kaiserslautern, Germany, 5:1 -- 5:6. ISBN: 978-1-4503-5288-8; doi: 10.1145/3115936.3115941 https://dl.acm.org/citation.cfm?id=3115941

3. Биков Д., Криптографски свойства на някои векторни булеви функции и паралелни алгоритми с CUDA, Дисертация за присъждане на ОНС "доктор", ВТУ "Св. св. Кирил и Методий".

1. Bouyuklieva S. and Bouyukliev I., Algorithms for Computation the Linearity and Degree of Vectorial Boolean Functions, Serdica J. Computing 10 (2016), No 3–4, pp 245–262. ISSN 1314-7897 – Online; 1312-6555 – Print

Научният архив поддържа инициативата за отворен достъп OAI 2.0 с начален адрес: http://da.uni-vt.bg/oai2/