Asymptotic Study of Complex Kummer Function

Георгиев, Георги (1989) Asymptotic Study of Complex Kummer Function Compt. rend. Acad. bulg. Sci., Tome 42, No. 10, pp. 23-26, Oct. 1989.

 An analytic study of Kummer confluent hypergeometric function F(a,c;x) is presented, based on its asymptotic expansion for large values of independent variable. The case a=Rea+jIma -complex, c=2Rea and x=jz - positive purely imaginary is considered, encountered in problems for normal rotationally symmetric modes in circular waveguides with azimuthally magnetized ferrite or solid-plasma. The results permit to derive general conclusions about the character of propagating modes in these structures.
 Kummer confluent hypergeometric function, asymptotic expansions

Природни науки, математика и информатика

Natural sciences, mathematics and informatics

 Георги Георгиев

Научният архив поддържа инициативата за отворен достъп OAI 2.0 с начален адрес: