On Type IV self-dual codes over Z4 (with Masaaki Harada)

Буюклиева, Стефка (2002) On Type IV self-dual codes over Z4 (with Masaaki Harada) Discrete Mathematics, vol.247, pp.25-50. Print ISSN 0012-365X https://www.sciencedirect.com/science/article/pii/S0012365X01001595


Природни науки, математика и информатика Математика

Natural sciences, mathematics and informatics Mathematics

 Стефка Буюклиева

6. Bahattin Yildiz,Abidin Kaya, Self-dual codes over $Z_4[x]/(x^2 + 2x)$ and the $Z_4$-images, International Journal of Information and Coding Theory, 5(2) (2018) 142–154. Print ISSN: 1753-7703. https://doi.org/10.1504/IJICOT.2018.095016

7. Yun GAO, Jian GAO, Fang-Wei FU, Self-Dual Cyclic Codes over Z_4[u]/ and Their Applications of Z_4-Self-Dual Codes Construction, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, Volume E101.A, Issue 10, Pages 1724-1729, Released October 01, 2018, Online ISSN 1745-1337, Print ISSN 0916-8508, https://doi.org/10.1587/transfun.E101.A.1724 https://www.jstage.jst.go.jp/article/transfun/E101.A/10/E101.A_1724/_article/-char/en

4. Jon-Lark Kim, Xiaoyu Liu, A generalized Gleason–Pierce–Ward theorem, Designs Codes and Cryptography 52(3), pp. 363-380, 2009. DOI: 10.1007/s10623-009-9286-y

5. Nocon, E.G. Zeta polynomials of type IV codes over rings of order four (2009) Kyushu Journal of Mathematics, 63 (2), pp. 209-237. DOI: 10.2206/kyushujm.63.209. Print ISSN : 1340-6116

3. Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

2. G. Nebe, E. Rains and N.J.A. Sloane, Self-Dual Codes and Invariant Theory, Springer, 2006.

1. W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields and Their Applications, 11(3) (2005), 451-490. DOI: 10.1016/j.ffa.2005.05.012

Научният архив поддържа инициативата за отворен достъп OAI 2.0 с начален адрес: http://da.uni-vt.bg/oai2/